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The typical cluster size for two-dimensional percolation models is discussed. It is 
shown that, for W0 = {x e Zz: 0 --* x }, [ -limn ~ ~(1/n) log Pp(] Wo] = n)] -1 
Ip-pcl -~ as PTpc, provided that Ep(lWol2)/Ep(lWol),~lp--pc[ J as pTpc. 
Furthermore, we introduce a new quantity fs(P), which may be thought of as 
the singular part of the free energy, and show that f , (p )~  [p-pc] ;v provided 
that the correlation length glp-p, . [  v as p~p~.  

KEY WORDS:  Percolation; typical cluster size; singular part of the free 
energy. 

1. INTRODUCTIOI~ 

The pursue of  this paper  is to discuss some characteristics of the typica! 
cluster size for the two-dimensional  percolat ion models satisfying the 
fundamental  assumpt ion as in Ref. 4, p. 371. For  simplicity we only 
describe our  results for the site percolat ion model  on Z 2 and leave the task 
of extending our  discussion to general models to the reader. Let us now 
introduce the two-dimensional  site percolat ion model. Let Pp denote the 
probabil i ty measure under  which all sites of the lattice Z 2 are indepen- 
dently occupied (nonoccupied)  with probabil i ty p (respectively 1 -  p). We 
say that  x is connected to y if there is a nearest neighbor  path over 
occupied sites connect ing x and y. We denote this event as {x--,  y}. Let 
W 0 =  { x e Z 2 : 0  ~ x } :  the cluster of occupied sites connected to O. This 
paper  is devoted to the s tudy of  certain special properties of  the "typical 
cluster size" about  the critical point  p c = i n f { p :  P p ( O ~  oe )>O} .  In the 
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paper, "Scaling Theory of Percolation Clusters" [1979], Stauffer ~8) 
introduced the following basic postulate: "We assume that the critical 
behavior of percolation is dominated by clusters of size Sr oc ] p -  Pc] 1/~, 
where differently defined typical cluster sizes Sr all diverge with the same 
exponent." 

Furthermore, he also proposed a scaling hypothesis, which seems to 
suggest that 

{n l - ~ e x p [ - n / S r  for P < P c  (*) 
Pp(I Wo] = n )  oc 

n 1 r 1 6 2  1/2} for P > P c  (**) 

This suggests that "typical clusters" are clusters of size ~ I P -  Pr l/~ 
and the critical exponent 1/a is equal to the exponent J of the gaps 

S,(p)=-Ep(]Wo[t+l;  ]Wot < oo)/Ep(]Wo]'; ]Wo] < oo) 

To see why 1/a = A, we apply the scaling hypothesis to obtain, for p < Pc, 

Z ~  n t + l P p ( I m o l = n )  n = O  
St(p)  = 

E~-o  ntpp(I Wol = n) 

Z~=o n'~ 1 + (1 ~) e x p [ - n / S e ( p ) ]  

Z~=o nt + (1- ~) exp[ -n /S r  

Sr 2 + (l - ~) ~g x,+ l + (1 ~)e ~ dx  
OC 

Sr 1+ (1-~) ~ x ,  + (1 ~)e x dx  

< S~(p) 

and similarly for p > Pc, 

5Zff_ o n~+l + (1 ~) exp { - [n/Sr  1/2 } 
S,(p) oc 

Z~=o nt + (l ~) exp{ -- [n/Sr  ) ] 1/2 } 

Sr 2 + (1 r) I ~  x t + l  + (1 -- r) exp( - x / x )  dx 
0(2 

Sr , +o ~) I g  x'+(1 ~) e x p ( - x / x )  dx 

~: Sr 

On the other hand, from the scaling hypothesis, we can also see that 

1 --logPp(lWo[=n) oeSr l l o g n  for P<Pc 
t7 

1 x//nl~176 = n )  oc Sr 1/2-(1--~)n-i/21ogn for P > Pc 
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Letting n -+ o% we have 

Si(p) l _  _ lim 1-1ogPp(lWol=n) ocS~(p) -1 for P<Pc  
n ~ o o  Iq  

1 
StI(P) 1/2_ -,~lim x//nl~176 = n )  oc S~(p) -~/2 for P>Pc  

Guided by scaling theory, we want to find a quantity St(p) associated with 
the correlation length r such that Sr diverges at the same rate as 
S,(p) and SI(p) for p < Pc, or St(p) and Sn(p)  for p > Pc.. We call such a 
quantity Sr the typical cluster size associated with the correlation length 
~(p). 

The concept of correlation length has been well studied. The usual 
definitions for the correlation length are 

~(p) = inf{N: for every x e Z 2, Pp(O ~ x) <~ exp( - [ x ] /N )}  

for P < Pc 

I ~Z f ~. ]I/t C,(p) = Ix[' Pp(O---, x;O 4-, oo) Pp(O--. x;O ~ co) 
x 2 x 2 

for P < Pc or P > Pc 

~'min{n: CRp(n)<~} for P<Pc 
L(P 'e )=[min{n:CRp(n)>>. l - e}  for P>Pc 

where CRp(n)= Pp (there exists an occupied crossing from left to right of 
B ( n ) -  { x e Z 2 :  [xl 4 n } :  the box of size n centered at 0). In the definition 
of L(p, e) it is not important to choose a precise value of e, since we can 
show that for e smaller than some small enough eo, all the above 
definitions of the correlation length are equivalent in the sense that if 
~ ( P ) ~ I P - P c [  ~ aspJ ,  pc or ~ ( p ) z l p ~ - p ] - '  a s p T p ~ ,  then so do the 
others. Here we denote f ( p ) ~  [pc-p[a  as P'FP~ if 

lim l o g f ( p )  _ 
p T p c  log ]p~ - p[ 

and similarly, f ( p )  ~ [p - Pc[ ~ as p { p~ if 

lim l o g f ( p )  _ 2  
p;p, log [ p -  Pcl 

From now on we shall fix e and write L(p) instead of L(p, e). For  further 
details on the correlation length we refer to Refs. 1, 5, and 7. Since these 
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definitions of the correlation length are equivalent, it is not necessary to 
distinguish them. For percolation in two dimensions it would be more 
convenient to work with the L(p). Let us consider 

SL(p) =---- Ep[ # {x ~ B(L): x ~ OB(L)} ] 

This quantity has already been studied extensively by Kesten ~s) and was 
shown to play a very important role in the proofs of scaling relations for 
the critical exponents which were predicted by the scaling hypothesis men- 
tioned above. Kesten's ~5) work provides us with a tool to study the typical 
cluster size rigorously without the need of using the scaling assumptions 
(,), (**). In fact, we shall define SL(p) as the typical cluster size associated 
with the correlation length L(p). To some extent we may think of a 
"typical cluster" as the union of the clusters that connect to the boundary 
OB(L) of the box B(L) by occupied paths. To justify the definition of SL(p) 
as the typical cluster size, we need to show that SL(p) is of the same order 
as S,(p), SI(p), or Sn(p). Half of this was shown in (1.1) of the following 
result: 

T h e o r e m  (Kesten). Let L(p) be the correlation length defined as 
before and let 1~p(L)= Pp(O is connected to a vertical line at distance L(p) 
away from the origin). Then 

S,(p)xSL(p)~rcp(L)L2(p) for t > l / 3  (1.1) 

Ep([ Wol; I Wo[ < o o ) ~  ~p2(L) LZ(p) (1.2) 

There exists a positive constant 6 such that 

Pp(~  > I Wol >~ 6SL(p)) >~ �89 (1.3) 

Here g(p) ~ h(p) means that there are positive constants A, .4 independent 
ofp  such that Ag(p)<. h(p)<~ 71g(p). For the proof of this theorem we refer 
the reader to Refs. 4 and 5. 

In this paper we add strength to the concept of the typical cluster size 
SL(p) by showing (see Section 3) the following: 

P r o p o s i t i o n  1. Assume that SL(p),,~Ip--pc] ~ as P~Pc. Then 
also, S I (p )~  [P-Pc[-'J as P'fPc. 

Note that the limit in the definition of SI(p) exists by the super- 
multiplicative property of n ipp(] Wo [ = n) (see Ref. 6). 

The proof of the above result will be based on the following: 

I_emma. Let Mt[L(p)] = the tth moment of the number of sites in 
the box B(L) connected to its boundary ~B(L) by occupied paths, i.e., 

M, EL(p) ] = E.EI {x ~ B(L): x --, 8B(L) }l'] 
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Then 

M, EL(p)] <~ BtEK1SL(p)] t 

where B t=  ( t +  1)! and KI is a positive constant depending only on e. 
The proof of the above lemma can be found in Ref. 4 except the fact 

that B t =  (t + 1)!. In our opinion it is not easy to see that the B t are of 
order (t + 1)! therein, since its proof is based on a rather complicated com- 
binatorial argument. Since our proof for Proposition 1 depends on the B ,  
we shall give a proof for the 1emma in Section 2 with an inductive 
argument. 

Remarks: 

1. If we apply the estimate in the lemma to the argument in Section 3 
of Ref. 5 we can show that for p > Pc 

Ep(IWol'; IWol < oo)<~ Ct[K2SL(p)]t np(L) 

where C , =  (30!. However, the constants Ct= (30! are not of the right 
order, since it was conjectured by Stauffer (8) that Ct = t! for p < Pc and that 
C, = (20! for p > Pc. 

2. At this point we do not know how to show that SL(p) is of the 
same order as Sn(p) for p > Pc and we cannot even show the existence of 
the limit as in the definition of Sn(p). 

Having discussed several ways to look at the typical cluster size, we 
next want to study its role in the singular behavior of the free energy, 

f ( p ) =  Y. !Pp(lWol=n) 
n~>l 

It is well known that the free energy can be shown to be the same as the 
number of clusters per site. It was conjectured in Ref. 9 that the free energy 
is singular at Pc. It is not clear at all that the free energy has any 
singularity, since Kesten ~3} showed that it is twice differentiable. The 
numerical calculations together with scaling theory suggested that the third 
derivative of the free energy should blow up at Pc at the rate [P-Pc]-1-=, 
where the critical exponent e is related to the exponent v of the correlation 
length by the scaling relation (R) 2 - e = d v ,  d =  2: dimension. Thus, we 
expect that the singular part fsing(P) of the free energy should behave as 
[ p - p c [  ~ in a neighborhood ofp~. However, it would be difficult to know 
the singular part, since we do not know whether the free energy has any 
singularity. While it is not easy to define the singular part f~mg(p), to prove 
the scaling relation (R) we propose a new way to look at this. It is based 
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on the observation that if the free energy behaves singularly at Pc, then 
only the tail of the summation i n f ( p )  = Zn~> 1 n-lPp([ W01 = n) should play 
an important role in this singularity. In other words, the mean number of 
clusters per site should be singular (if it were so!) due to the number of 
"large clusters." But how large should the cluster be in order for us to see 
the scaling relationship such as (R)? Physicists (e.g., Refs. 2 and 8) suggest 
that any cluster larger than the typical cluster size should be thought of as 
the large cluster. From this we believe that 

f s (p)  = - ~ n 1pp([Wo[=ll ) 
n >1 6 S L ( p )  

where 6 is some positive constant, should be thought of as a representative 
for the singular part of the free energy. In order to support our belief, in 
Section 4 we apply Kesten's theorem to give a proof of the following result: 

Proposition 2. There exists a constant 6 > 0 independent o fp  such 
that 

f , ( p ) ~ L  2(p) 

in some neighborhoods (Pl,  P,.) and (Pc, P2) ofp~. 
This immediately implies the following: 

C o r o l l a r y .  Assume that L(p)  ,.~ I P -  Pcl -~ as p ]'Pc (or p SPc). Then 

f , ( p ) ~ l p - - p c [  du as pT&. (or pSpc)  

where d =  2: the dimension of the percolation model. 

2. PROOF OF THE L E M M A  

Fix e as in the definition of L(p, e). From now on, C~, C~ will be 
constants depending only on e and their values may vary from line to line. 
Denote nn = ~p(n)= Pp(O is connected to a vertical line at distance n away 
from the origin). It was shown in Ref. 4 that for all n <<. L(p),  

Recall that 

7z, ~ Pp(O ~ OB(n)) (2.1) 

7z, ~ re2, , (2.2) 

We claim 

M , [ L ( p ) ]  = Ep{l{x e B(L): x --, c~B(L)} I'} 

1 12L(p) ] 
M,+ [L(p)]  ~< C~(t + I) L(p) -Zok-- ~k.l M,[L(p)]  (2.3) 
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To prove this, we write 

t + l  ) 

M,+IEL(p)]= Z PP.,9, {x,--*~B(L)} 
Xl , . . . ,x t+ 1 c B ( L )  

2L(p) 

= 2  2 
k ~ O  x t + I ~ R k ~ B ( L  ) 

x ~. Pp {x, ~ cgB(L)}, x, +1 -'4" OB(L) 
x l , . . . , x t ~ B ( L )  i 1 

where Rk is the set of all points at distance k from {Xl ..... x,} tj ~?B(L). For 
a fixed k >/4, we have (4) 

Pp {x~-~ 3B(L)}, x,+l ~ OB(L), Circuitx,+ l(k) 
i 1 

<~Pp( ~ {xi~OB(L)inB(L)\Bx,+~(k/2)} 
i = l  

and {x,+, ~ OB~,+,(k/2)}) 

where Circuit~,+~(k) is the event that there exists an occupied circuit in the 
annulus Bx,.~(k)\Bx,+~(k/2 ) centered at x,+ 1. Then, by FKG,  the 

t + l  

LHS~> PP \i91 {xi-~ OB(L) } ) Pp(CircuiG,+~(k)) 

~C~Pp(;~=; {xi--*OB(L)}) 

(d ) RHS = Pp {xi--, ~B(L)in e ( L ) \  8x,+~(~/2)} 
i 1 

x Pp{xt+ 1 ~ ?Bx,+~(k/2)} 

<<. C~Pp { x i ~  3B(L)} ~ 
i 1 

Hence, for k ~> 4 we obtain 

t 
t + l  

For k ~< 4 the above inequality is obvious. Since there are at most 8t(k + l) 
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points at distance k from {x~ ..... xt} and since there are at most 
8 ( L - k  + 1) points at distance k from the boundary 8B(L), we have 

2L(p) 2L(p) ] 
Mt+IFL(p)]<<. C~ ~ 8t (k+l )z~k+C~ ~ 8 ( L - k + l ) ~ c k  

k=0 k=0 

xl,...,xte B(L) i= 1 

Since the first two sums involving rck are bounded by const-( t  + 1)L(p)  
ZzL(p) and the last sum is exactly M,[L(p)], (2.3) is obtained. k=0 7~k 

Remark. Kesten (4) further showed 

2L(p) L(p) 

rck ~ Z zt~ ~ L(p) 7Zp(L) (2.4) 
k=0 k=0 

Hence, (2.3) implies 

Me+ ,[L(p)] <<. C~(t + 1) L(p) 2 rtp(L) Mt[L(p)] (2.5) 

Note that 

MI[L(p)]= ~ P~(x-*SB(L)) 
x e B ( L )  

L(p) 

<~C~ ~ ( L - k + I ) ~ k  <<.K, L2~p(L) 
k=0 

This shows 

M,+ , [L(p) ]  <~ ( t+  1)! [KaL2(p) 7~p(L)] e+l (2.6) 

where K1 is some positive constant depending only on e. 
Before leaving this section, we note that by the same argument we can 

show, for t >~ 1, 

ER{ I Wo r~ B(L)I' I 0 ~ OB(L)} 
<~ C~(t + 1 ) L2~p(L) Ep{I Wo c~ B(L)I '+ ' l  0 ~ ~3B(L) } (2.7) 

and 

Ep{IWonB(L)['IO~SB(L)}~(t+I)! [K2L2nR(L)] ' (2.8) 

where K z is some positive constant depending only on e. The inequalities 
(2.6) and (2.8) play important roles in the proof of (1.1). For a proof of this 
see Ref. 5, Section 3. 



Cluster Size for 2D Percolation 723 

3. PROOF OF PROPOSIT ION 1 

In this section we show Proposition 1. Throughout we take p < PL.. 
First we claim 

S,(p) ~ C~SL(p) (3.1) 

The proof given here was communicated to the author by H. Kesten. To 
prove this, it is enough to show there exist constants C1, C2, C3 > 0, so 
that 

P p( ] Wol ~ C l k L 2~p( L ) ) <~ C2 e x p ( - C 3 k )  (3.2) 

We denote by B(n) the box of size L(p, s) centered at n = (n12L, n22L), 
(nl, ne)eZ 2, i.e., B(_n)={xeZ2:lx-_nl<~L(p,e)}. We say that _n is 
connected to 0 if there is an occupied path connecting B(n) and B(0). Let 
F =  {_n: _0 ~_n}. It can be seen from the proof of Theorem 5.1 of Ref. 3 that 

P p ( I / ]  > k) ~< C2 exp( - C3k) (3.3) 

for some positive constants C2, C3 provided e is sufficiently small. Thus, to 
prove (3.2), we need to show the exponential decay in k of Pp(] m0[ />  

ClkLZ~p(L); IFI ~<k). 
Let 

z .  i = # { x  ~ B(_n,): x -~ aB(_n, ) }  

We have 

Pp([ Wol ~> C, kL2~e(L); Irl ~<k) 

<~ Z Pp( Z Z~,>~C~kL2~e(L)) 
F : I F I < ~ k  \ n i ~ T  - 

<~ ~ ,inf({exp[-rC~kL27~'(L)]}Epexp(~>o \ rrZ~-i)) 
F: I FI <~ k n 

<~ ~ inf({expE-rClkL2~rp(L)]}FEp exp(rZ.~)] k) 
F: IFI ~<k r>O 

Use (2.6) to get 
r t 

Ep exp(rZ.,)= ~ ~ Ep(Z'~,) 
t = O  

~ ~ ( t+ 1)! [ K I L ~ ( L ) ]  ' 
t = O  

= ~ r ' ( t+  1)[KIL2rcp(L)] ~ 
t = O  
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Hence, by choosing r = 1/2K1L2xp(L), we have 

Epexp(rZ~_l)<~ ~, (t+ 1 ) ( 1 / 2 ) ' = C 5 <  oo 
t = O  

Since the number of clusters F with IFI ~ k is bounded by C4 k for some 
positive constant C4, 

Pp(I Wol >1 C,kLaxp(L); trl < k ) ~  C4k[exp(-Clk/2K1)] C~ 

We choose C1 =4K1 log(C4Q) to obtain (3.2). 
Thus, from (3.1) the critical exponent of SI(p) is not larger than A. To 

get the other bound, we consider 

Ep(lmol') = ~ n'Pp(Imol=n) 
n = l  

But by the supermultiplicative property of n-lpp(I I~01 = n) 

Hence 

Pp(I Wo[ = n) ~< n exp[ -n/Sx(p)] 

Ep(t Wol t) < ~ n'n exp[ -n/Si(p)]  <~ KSI(p) ~+2 
n = l  

where K =  K(t) is some positive constant. But Kesten (5) showed that 

Ep(I Wol')/> C ,S L(p )' ~zp( L ) 

where C, is some constant depending on t. Then 

C , S L(p )' x,( L ) <. KSi(p ) '+2 

Hence, 

log SL(p) 1 log(CtrCp(L)) <~ t + 2 log(KS~(p)) 
l o g l p - p c l  t l o g l p - p c l  t log [p-pc[ 

Letting p Tpc and then t--* o% we obtain the result that Si(p)~ I P -  PcF ~ 

4. PROOF OF P R O P O S I T I O N  2 

The proof of Proposition 2 will be based on Kesten's theorem. In fact, 
on one hand, using the Cauchy-Schwartz inequality and then (1.3), we 
have 
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oo > n >~ 6 S L ( p )  co > n >~ 6 S L ( p )  El 

>1 ~ Pp(lWol=El) >i ~p(L) 
oo > n > ~ 6 S L ( p )  

Thus, 

f~(p)= ~ n-lpp(IWoi =n) 
n > 1 6 S L ( p )  

~ 1  2 atOp(L) ~ nPp(l Wol n) 
> n >1 ~ S L ( p )  

> ~z2(L)/E.(I mol; I mol < oo) 

~ 1  2 2 ~p(L )/C~p(L ) L2(p) 

>>. 1/[4C~LZ(p)] 

where in the last but one inequality we used (1.2). On the other hand, 

f~(p) ~< 
1 

nPp(lmol = n) 
[ ( ~ S L ( p )  ] 2 oo > n > 1 6 S L ( P )  

l 
<~62S2(p---------~)Ep([Wol; [Wol < m) 

C La(p) 
~ 6 2 [ r 2 ( p )  ~p(L)] 2 C~62LZ(p) 

by (1.1) and (1.2). This shows Proposition 2. 
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